Maths Workshop Y2 and Y3

Thursday 9th March 2023

Elis Holland

Aims

- To understand what your child needs to be able to do mathematically as they move through the phase
- How we approach the teaching of mathematics
- What are the common areas of concern / misconceptions
- Things that you can do to support your child to build the key skills

Your child's mathematical learning journey

- Children begin their journey as mathematicians in Early Years. They use inside the classroom and the outside areas to explore what numbers mean using the counting principles. They listen to stories based around numbers and engage with the Numberblocks characters as they investigate numbers up to 5. They are encouraged to start reasoning and problem solving using mathematical talk.
- As they progress through the school, they continue to gain a deeper understanding of number and how different operations link to each other. They use a Concrete (objects) Pictorial (drawings) - Abstract (formal methods) approach to learning new concepts which allows everyone to succeed and boosts confidence in expl aining methods. Children are encouraged to use technical mathematical vocabulary from the start of their journey and to share what we have learnt with others.
- Classes mostly all work on the same objectives, with support for those who need it, and extra challenges for those who grasp something more quickly. Our hands on and practical approach aims to support children to get a love of maths and become life-long learners.
- It is best when Maths is seen as a building project. Each new thing that we learn builds upon something we hav e learnt before. As we learn more, our foundations become stronger and our building grows taller.

How do we change this?

Play games and give the children opportunities to investigate and invent:
Invent the next Dienes Piece: 10000 ... 1000000
How big is a million with Dienes?
Start from an early stage to form habits for inverse and commutative:

$$
\begin{aligned}
& 4+2=62+4=66-2=4 \\
& 40+20=6020+40=6060-20=40
\end{aligned}
$$

How do we teach mathematics?

Teaching for Mastery

Make 37

Problem solving to show understanding of number facts and reasoning skills.

Four bags contain a large number of $1 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 7 s .

Can you pick ten numbers from the bags that add up to 37 ?

Building skills to read and understand the problem before solving it:
What do I know?
When you add 2 odd numbers the answer is even. If you add 10
What do I need to find out?

Basic skills focus on developing mathematical fluency of key knowledge for each unit of maths. These key skills are taught through short, repetitive sequences of counting in different forms, learning by spotting patterns and making connections to known facts, and finally applying the skills in different contexts. By mastering this skills, children are then
equipped with the freedom to explore more complex mathematical concepts confidently.

Problem solving skills are

 taught with the aim of not only preparing children to apply their mathematical skills in different contexts, but to also prepare them for challenges in their everyday life. By working creativ ely and collaboratively, trying different strat egies and methods, our children dev elopthe perseverance and
resilience necessary for increasingly complex problemsolving. Through emphasising speaking and listening skills, we also encourage our children to focus on the process rather than the answer and to use precise and sophisticated mathematical language to explain and justify their solutions.

Practical Pictorial Abstrac \dagger
Fluency Reasoning Problem Solving

Curriculum Progression: At the beginning of the year, each year group teacher is given a long-term overview of the mathematics units for the year. This ensures all concepts are built on previous knowledge so
that foundations are fully secure. Children spend longer on key mathematical concepts, most noticeably number. Significant time is
spent developing deep knowledge of the key ideas that are needed to underpin future learning

Key Ideas and Structures

- Make time: Investigate Patterns $100-60=100-61=$
- True or False ?
-How many ways?
-Fluency - missing number problems
- Stem Sentences
-Inverse Relationships:735-128 =
$128+$ \qquad $=735$
- Make up stories to match calculations

Less confident pupils - What is their challenge? Identify steps for their learning journey.

Common misconceptions / problems

- You ask your Year 3s to list pairs with a total of 100, and one child's pairs of numbers are all 10 too big. What is s/he doing? The child has probably thought of numbers where both the 10 s digits and the 1 s digits add to 10 , e.g. $68+42$.
- CONFIDENCE: The children are reluctant to explore different strategies not to make mistakes. Our say: mistakes help us to learn.
- Taking part in active collaboration to developlearning and deepen thinking, not only with the tegener but with each other.

How can you help?

Be familiar with the curriculum

- Use Kilm orie's calculation policy to support with methods
- Get your child to tell you what they already know / understand (give examples)

Short clip video with activity at home for Year 2
 Year 3

- The array game: \#ps://www.youtube.com/watch?v=|tsaefDzMEk\&list=PLn OhWliHk5d54CyBLoC281QJwNViWBrGu

You can have your own square and at the end compare how many squares you didn't fill in!

Play the game with addition or subtraction.
For division: Can you divide the generated number by 2,3,4,5? Or miss a turn.
To generate the numbers, roll the dice and turn the smallest number into tens: for example,
2 and 5 I can make 25.

Not a TEST - Have fun!

How many ways can you make 1000?

Who can see 450 ? How many 250? $25 \times 4 \times 1025 \times 40$
50×20 How many 125 ? $125 \times 8 \ldots$

Challenge:

How many ways can you make 1000 ?

- Additive

- Multiplicative including powers of ten

The answer is 30 .

Write the calculations.

What is the difference between 6 and 12?
Activities to build confidence:

Place value - Fluency

Place 47 on each of these empty number lines.

Fluency Addition and subtraction

Using number bonds Using dienes

$\Rightarrow \begin{aligned} & 23+17= \\ & 20+10+10=\end{aligned}$ $230+170$
 $\underline{200+100+100}$

More than single digits?

72-47

72-47

IH1)

Counting or calculating?

+ and -

Using empty number lines

Estimate the answers

What do you already know?

I can partition 9 into 4 and 5

$$
\begin{aligned}
& 34-9= \\
& 34-4=30-5=25 \\
& 234-9= \\
& 234-19=
\end{aligned}
$$

What strategy?
Calculate or count?

Problem solving
 y 3

A pack of paper has 150 sheets. 4 children each take 7 sheets. How many sheets of paper are left?

: : : :
:: : :

Vocabulary: equal groups, groups of... rows, columns, repeated addition,
Which picture am I describing?
repeated subtraction

4	8	12	16	20	24	28
8	32	36	40	44	48	$x 4$
8	16	24	32	40	48	X8
	56	64	72	80	88	96

groups of 3
4 groups of 3 equals
12 counters

$$
000000000000
$$

$$
3+3+3+3=3 \times 4=12
$$

What is the inverse calculation?

Y 3 Investigate the link between 3 and 6 timetables.

$$
6 \times 2=12
$$

Stem sentences:
practise using the correct vocabulary

Context, Language to Abstract
Mathematics

- Ten 2p makes 20 p
- $2+2+2+2+2+2+2+2+2+2$ - 5 - 5 .
- 2,4,6,8,10,12,14,16,18,20
\downarrow
- Ten groups of 2 make 20
- Ten 2s make 20
- $10 \times 2=20$

Write a calculation that makes the same total as the opposite side.

$$
2 \times 5=20 \div 2
$$

$2 \times 6=$

$$
=15 \div 3
$$

Phases of basic fact mastery (Baroody 2006)

Phase 1: Modeling and/or counting to find the answer

- Solving 6×4 by drawing 6 groups of 4 dots and skip counting the dots

Deriving answers using reasoning strategies based on known facts

- Solving 6×4 by thinking $5 \times 4=20$ and adding one more group of 4

Phase 3: Mastery (efficient production of answers)

- Knowing that $6 \times 4=24$

Which of these pictures could represent groups of six? Write two multiplication equations for each picture thot represents groups of six.

Practical, pictorial practice as needed.

How can $7 \times 10=70$ help me work out what 9×7 is?

[^0]

$$
(10 \times 4)+(2 \times 4)
$$

$$
(5 \times 12)-(1 \times 12)
$$

The pupils will be confident with 1, 2, 10, 5 times tables.

What
calculation is represented here?

0

Sia's clue: the number of sides
How can we use matchsticks to make the shapes?
Henry's clue: 1 matchstick is one side Challenge:
What other properties of shapes can you use?

Represent 4 and 8 times tables with the matchsticks and write the multiplication and division calculations.

$$
\begin{aligned}
& 4 \times 3==\frac{\text { What does } 4 \text { represent? }}{\text { What does } 3 \text { represent? }}
\end{aligned}
$$

Childrens' questions:
Howcan we represent 4 divided by 4 ?

Multiplication and Division Reasoning

Do you agree or disagree? Prove it!
$24 \div 4<24 \div 8$

$$
4 X_{\ldots}=24
$$

$$
8 x_{\ldots}=24
$$

$4 \times 6=8 \times 3$

First find $1 / 3$, this is 9 divided by 3

Use your division learning to solve fraction statements.
$1 / 3$ is 3 so $2 / 3$ is 6

Y2 Fractions: Reasoning

Here are four fractions of four different bars.
Can you draw the whole bar for each?

Activities at home

- Use playing cards to practise adding numbers. Turn over two cards and add them together or subtract the smaller number from the larger one.
- Use a clock, watch or phone showing analogue and digital time
- Make your own clock using card and butterfly clips
- Look at variety of jugs that show mi/l - make cakes/smoothies, etc. to practise measuring
- Look at scales that show kg/g - make cakes to practise measuring
- Measure the length of objects with a ruler or measuring tape. Build awareness of the distance travelled by car How many miles? How long does it take?
- Go shopping - work out totals, change, if one pack costs X how much do $2 / 4 / 3$ cost?

Useful maths websites

These sites have an excellent range of activities and games for most topics.

- Top Marks Age 7-11
https://www.topmarks.co.uk/maths-games/7-11-years/ordering-and-sequencing-numbers
- Cool Maths 4 Kids - also includes lessons/explanations/brain teasers

> http://www.coolmath4kids.com/

- Maths is fun - Range of explanations and online activities
https://www.mathsisfun.com/numbers/index.html
- SUMS Maths - Games sorted into: Number, Data Handling, Calculations, Shape and Space.
http://www.sums.co.uk/original/
- Arcademics Skill Builders - games to play against the computer or a friend
http://www.arcademics.com/
- NRICH - SUMS Maths - Games sorted into: Number, Data Handling, Calculations, Shape and Space. http://www.sums.co.uk/original/
https://nrich.maths.org/8937

KILMORIE

[^0]: "If I know $\mathbf{7 \times 1 0 = 7 0 , ~ I ~ k n o w ~ t h a t . . . " ~}$

